This paper introduces a novel variational inference (VI) method with Bayesian and gradient descent techniques. To facilitate the approximation of the posterior distributions for the parameters of the models, the Stein method has been used in Bayesian variational inference algorithms in recent years. Unfortunately, previous methods fail to either explicitly describe the influence of its history in the tracing of particles (Q(x) in this paper) in the approximation, which is important information in the search for particles. In our paper, Q(x) is considered in design of the operator Bp, but the chance of jumping out of the local optimum may be increased, especially in the case of complex distribution. To address the existing issues, a modified...