Where dual-numbers forward-mode automatic differentiation (AD) pairs each scalar value with its tangent value, dual-numbers \emph{reverse-mode} AD attempts to achieve reverse AD using a similarly simple idea: by pairing each scalar value with a backpropagator function. Its correctness and efficiency on higher-order input languages have been analysed by Brunel, Mazza and Pagani, but this analysis used a custom operational semantics for which it is unclear whether it can be implemented efficiently. We take inspiration from their use of \emph{linear factoring} to optimise dual-numbers reverse-mode AD to an algorithm that has the correct complexity and enjoys an efficient implementation in a standard functional language with support for mutable...