We study the complexity of proof systems augmenting resolution with inference rules that allow, given a formula $\Gamma$ in conjunctive normal form, deriving clauses that are not necessarily logically implied by $\Gamma$ but whose addition to $\Gamma$ preserves satisfiability. When the derived clauses are allowed to introduce variables not occurring in $\Gamma$, the systems we consider become equivalent to extended resolution. We are concerned with the versions of these systems without new variables. They are called BC${}^-$, RAT${}^-$, SBC${}^-$, and GER${}^-$, denoting respectively blocked clauses, resolution asymmetric tautologies, set-blocked clauses, and generalized extended resolution. Each of these systems formalizes some restricted ...