The simplex method for linear programming is known to be highly efficient in practice, and understanding its performance from a theoretical perspective is an active research topic. The framework of smoothed analysis, first introduced by Spielman and Teng (JACM '04) for this purpose, defines the smoothed complexity of solving a linear program with $d$ variables and $n$ constraints as the expected running time when Gaussian noise of variance $\sigma^2$ is added to the LP data. We prove that the smoothed complexity of the simplex method is $O(\sigma^{-3/2} d^{13/4}\log^{7/4} n)$, improving the dependence on $1/\sigma$ compared to the previous bound of $O(\sigma^{-2} d^2\sqrt{\log n})$. We accomplish this through a new analysis of the \emph{sha...
It is well known how to clarify whether there is a polynomial time simplex algorithm for linear prog...
We show that the shadow vertex simplex algorithm can be used to solve linear programs in strongly po...
In this chapter, we give a technical overview of smoothed analyses of the shadow vertex simplex meth...
Explaining the excellent practical performance of the simplex method for linear programming has been...
Explaining the excellent practical performance of the simplex method for linear programming has been...
Explaining the excellent practical performance of the simplex method for linear programming has been...
Presented as part of the Workshop on Algorithms and Randomness on May 17, 2018 at 2:45 p.m. in the K...
The smoothed analysis of algorithms is concerned with the expected running time of an algor...
The smoothed analysis of algorithms is concerned with the expected running time of an algor...
Abstract. We introduce the smoothed analysis of algorithms, which continuously interpolates between ...
In this chapter, we give a technical overview of smoothed analyses of the shadow vertex simplex meth...
AbstractA modification of the revised simplex algorithm is considered where every step involves O(m2...
Despite their very good empirical performance most of the simplex algorithm's variants require expon...
The thesis begins by giving background in linear programming and Simplex methods. Topics covered inc...
The Simplex method is the most popular algorithm for solving linear programs (LPs). Geometrically, i...
It is well known how to clarify whether there is a polynomial time simplex algorithm for linear prog...
We show that the shadow vertex simplex algorithm can be used to solve linear programs in strongly po...
In this chapter, we give a technical overview of smoothed analyses of the shadow vertex simplex meth...
Explaining the excellent practical performance of the simplex method for linear programming has been...
Explaining the excellent practical performance of the simplex method for linear programming has been...
Explaining the excellent practical performance of the simplex method for linear programming has been...
Presented as part of the Workshop on Algorithms and Randomness on May 17, 2018 at 2:45 p.m. in the K...
The smoothed analysis of algorithms is concerned with the expected running time of an algor...
The smoothed analysis of algorithms is concerned with the expected running time of an algor...
Abstract. We introduce the smoothed analysis of algorithms, which continuously interpolates between ...
In this chapter, we give a technical overview of smoothed analyses of the shadow vertex simplex meth...
AbstractA modification of the revised simplex algorithm is considered where every step involves O(m2...
Despite their very good empirical performance most of the simplex algorithm's variants require expon...
The thesis begins by giving background in linear programming and Simplex methods. Topics covered inc...
The Simplex method is the most popular algorithm for solving linear programs (LPs). Geometrically, i...
It is well known how to clarify whether there is a polynomial time simplex algorithm for linear prog...
We show that the shadow vertex simplex algorithm can be used to solve linear programs in strongly po...
In this chapter, we give a technical overview of smoothed analyses of the shadow vertex simplex meth...