Let $K$ be the function field of a smooth projective geometrically integral curve over a finite extension of $\mathbb{Q}_p$. Following the works of Harari, Scheiderer, Szamuely, Izquierdo, and Tian, we study the local-global and weak approximation problems for homogeneous spaces of $\textrm{SL}_{n,K}$ with geometric stabilizers extension of a group of multiplicative type by a unipotent group. The tools used are arithmetic (local and global) duality theorems in Galois cohomology, in combination with techniques similar to those used by Harari, Szamuely, Colliot-Th\'el\`ene, Sansuc, and Skorobogatov. As a consequence, we show that any finite abelian group is a Galois group over $K$, rediscovering the positive answer to the abelian case of the ...
We prove the failure of the local-global principle, with respect to discrete valuations, for isotrop...
Let S be a finite set of rational primes. We denote the maximal Galois extension of Q in which all p...
Let $K$ be a finite extension of the $p$-adic numbers $\mathbb Q_p$ with ring of integers $\mathcal ...
We study local-global questions for Galois cohomology over the function field of a curve defined ove...
We study local-global questions for Galois cohomology over the function field of a curve defined ove...
In this thesis, we are interested in the arithmetic of some function fields. We first want to establ...
Dans cette thèse, on considère l'arithmétique des groupes linéaires sur les corps de fonctions p-adi...
We study local-global questions for Galois cohomology over the function field of a curve defined ove...
We study local-global questions for Galois cohomology over the function field of a curve defined ove...
We study local-global questions for Galois cohomology over the function field of a curve defined ove...
Dans cette thèse, nous nous intéressons à l'arithmétique de certains corps de fonctions. Nous cherch...
Dans cette thèse, nous nous intéressons à l'arithmétique de certains corps de fonctions. Nous cherch...
Let F be the function field of a projective smooth geometrically connected curve X defined over a fi...
In this bachelor's thesis we give a complete proof of the Kronecker-Weber theorem, which states that...
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 20...
We prove the failure of the local-global principle, with respect to discrete valuations, for isotrop...
Let S be a finite set of rational primes. We denote the maximal Galois extension of Q in which all p...
Let $K$ be a finite extension of the $p$-adic numbers $\mathbb Q_p$ with ring of integers $\mathcal ...
We study local-global questions for Galois cohomology over the function field of a curve defined ove...
We study local-global questions for Galois cohomology over the function field of a curve defined ove...
In this thesis, we are interested in the arithmetic of some function fields. We first want to establ...
Dans cette thèse, on considère l'arithmétique des groupes linéaires sur les corps de fonctions p-adi...
We study local-global questions for Galois cohomology over the function field of a curve defined ove...
We study local-global questions for Galois cohomology over the function field of a curve defined ove...
We study local-global questions for Galois cohomology over the function field of a curve defined ove...
Dans cette thèse, nous nous intéressons à l'arithmétique de certains corps de fonctions. Nous cherch...
Dans cette thèse, nous nous intéressons à l'arithmétique de certains corps de fonctions. Nous cherch...
Let F be the function field of a projective smooth geometrically connected curve X defined over a fi...
In this bachelor's thesis we give a complete proof of the Kronecker-Weber theorem, which states that...
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 20...
We prove the failure of the local-global principle, with respect to discrete valuations, for isotrop...
Let S be a finite set of rational primes. We denote the maximal Galois extension of Q in which all p...
Let $K$ be a finite extension of the $p$-adic numbers $\mathbb Q_p$ with ring of integers $\mathcal ...