Local search is a fundamental tool in the development of heuristic algorithms. A neighborhood operator takes a current solution and returns a set of similar solutions, denoted as neighbors. In best improvement local search, the best of the neighboring solutions replaces the current solution in each iteration. On the other hand, in first improvement local search, the neighborhood is only explored until any improving solution is found, which then replaces the current solution. In this work we propose a new strategy for local search that attempts to avoid low-quality local optima by selecting in each iteration the improving neighbor that has the fewest possible attributes in common with local optima. To this end, it uses inequalities previousl...