Poincare's recurrence theorem, which states that every Hamiltonian dynamics enclosed in a finite volume returns to its initial position as close as one wishes, is a mathematical basis of statistical mechanics. It is Liouville's theorem that guarantees that the dynamics preserves the volume on the state space. A quantum version of Poincare's theorem was obtained in the middle of the 20th century without any volume structures of the state space (Hilbert space). One of our aims in this paper is to establish such properties of quantum dynamics from an analog of Liouville's theorem, namely, we will construct a natural probability measure on the Hilbert space from a Hamiltonian defined on the space. Then we will show that the measure is invariant...