For a fixed graph H, the H-free Edge Deletion/Completion/Editing problem asks to delete/add/edit the minimum possible number of edges in G to get a graph that does not contain an induced subgraph isomorphic to the graph H. In this work, we investigate H-free Edge Deletion/Completion/Editing problems in terms of the hardness of their approximation. We formulate a conjecture according to which all the graphs with at least five vertices can be classified into several groups of graphs with specific structural properties depending on the hardness of approximation for the corresponding H-free Edge Deletion/Completion/Editing problems. Also, we make significant progress in proving that conjecture by showing that it is sufficient to resolve it only...