In this paper we prove some existence, uniqueness and regularity results for a weak solution of a quasilinear elliptic nonlinear problem posed in a domain perforated by one or more holes. The nonlinear term is of the form , where is singular at . On the boundary of the holes we impose a nonlinear Robin condition, while on the exterior boundary we prescribe a homogeneous Dirichlet condition. The difficulty here arises in dealing simultaneously with the quasilinear matrix field, the singular datum and the nonlinear Robin condition. To show the existence of a solution we approximate the problem with a sequence of nonsingular problems for which the existence of a solution is proved via the Schauder fixed-point theorem. The main tool when passin...