In this paper the problem of attitude tracking control for a rigid spacecraft is addressed. It is assumed that only attitude measurements are available, and thus spacecraft's angular velocity has to be properly estimated. Two alternative schemes are proposed in which the unit quaternion is adopted to represent the orientation. In the first scheme, a second-order model-based observer is adopted to estimate the angular velocity used in the control law. In the second scheme, an estimate of the angular velocity error is obtained through a lead filter. Sufficient conditions ensuring local exponential stability of the two controllers are derived via Lyapunov analysis. (C) 1999 Elsevier Science B.V. All rights reserved