This paper presents new techniques to implement direct digital frequency synthesizers (DDFSs) with optimized piecewise-polynomial approximation. DDFS performances with piecewise-polynomial approximation are first analyzed, providing theoretical upperbounds for the spurious-free dynamic range (SFDR), the maximum absolute error, and the signal-to-noise ratio. A novel approach to evaluate, with reduced computational effort, the near optimal fixed-point coefficients which maximize the SFDR is described. Several piecewise-linear and quadratic DDFS are implemented in the paper by using novel, single-summation-tree architectures. The tradeoff between ROM and arithmetic circuits complexity is discussed, pointing out that a sensible silicon area red...