This paper describes the design and development of a modular soft manipulator for minimally invasive surgery, which equals the high dexterity of classic hyper redundant continuum, but rigid, robots resulting in safer potential interaction with internal organs. The manipulator relies on the use of a soft flexible fluidic actuator in each of its modules, which can be wireless controlled by means of an embedded fluidic control unit. This actuation unit is equipped with three miniaturized latching valves, a wireless microcontroller board, and a specifically designed fluidic distributor integrated into the elastomeric material that the module is made of. FEM simulations and experimental tests verified the reliability of the distributor in acting...