Most representative decision-tree ensemble methods have been used to examine the variable importance of Treasury term spreads to predict US economic recessions with a balance of generating rules for US economic recession detection. A strategy is proposed for training the classifiers with Treasury term spreads data and the results are compared in order to select the best model for interpretability. We also discuss the use of SHapley Additive exPlanations (SHAP) framework to understand US recession forecasts by analyzing feature importance. Consistently with the existing literature we find the most relevant Treasury term spreads for predicting US economic recession and a methodology for detecting relevant rules for economic recession de...