In the era of big data, the data in many business scenarios are characterized by a small number of labelled samples and a large number of unlabelled samples. It is quite difficult to classify and identify such data and provide effective decision support for a business. A commonly employed processing method in this kind of data scenario is the disagreement-based semisupervised learning method, i.e., exchanging high-confidence samples among multiple models as pseudolabel samples to improve each model’s classification performance. As such pseudolabel samples inevitably contain label noise, they may interfere with the subsequent model learning and damage the robustness of the ensemble model. To solve this problem, a semisupervised classificatio...