Un ensemble S⊂Zd est \emph{convexe discret} si \conv(S)∩Zd=S, où \conv(S) est l'enveloppe convexe de S. Ici, nous considérons plusieurs problèmes algorithmiques traitant de la reconnaissance d'ensembles convexes discrets ainsi que de la détection de sous ensembles convexes discrets. Nous montrons que l'algorithme quickhull s'exécute en temps linéaire pour des ensembles convexe discret. Puis nous utilisons ce résultat afin de proposer un algorithme qui teste la convexité discrète de S⊂Z2 en O(n+hlogr) temps, où h est le nombre de sommet de l'enveloppe convexe de S et r est le diamètre de S. Ensuite, nous étendons ce résultat et montrons comment il peut être utilisé afin de résoudre le problème de reconnaissance d'ensemble convexe discret. En...
In computer science, pictures are digital and so, they are composed of pixels in 2D or of voxels in ...
All possible convex hull (i.e. the minimum area convex polygon containing the planar set) algorithms...
International audienceWe study the development of formally proved algorithms for computational geome...
A set S⊂Zd is said \emph{digital convex} if \conv(S)∩Zd=S, where \conv(S) denotes the convex hull of...
A set $S \subset \mathbb{Z}^d$ is \emph{digital convex} if $\conv(S) \cap \mathbb{Z}^d = S$, where $...
International audienceA set S ⊂ Z^d is digital convex if conv(S) ∩ Z^d = S, where conv(S) denotes th...
International audienceA set S ⊂ Z 2 of integer points is digital convex if conv(S) ∩ Z 2 = S, where ...
International audienceDiscrete geometry redefines notions borrowed from Euclidean geometry creating ...
Discrete geometry redefines notions borrowed from Euclidean geometry creating a need for new algorit...
AbstractGiven a convex body C in the plane, its discrete hull is C0 = ConvexHull(C ∩ L), where L = Z...
International audienceThe notion of convexity translates non-trivially from Euclidean geometry to di...
Trying to develop a fast algorithm that finds all the edges of a convex hull produced three differen...
Le calcul de l'enveloppe convexe d'un objet est un problème déjà largement traité. Les différents al...
Dans cette thèse, nous donnons de nouveaux résultats sur la taille moyenne d’enveloppes convexes de ...
In computer science, pictures are digital and so, they are composed of pixels in 2D or of voxels in ...
All possible convex hull (i.e. the minimum area convex polygon containing the planar set) algorithms...
International audienceWe study the development of formally proved algorithms for computational geome...
A set S⊂Zd is said \emph{digital convex} if \conv(S)∩Zd=S, where \conv(S) denotes the convex hull of...
A set $S \subset \mathbb{Z}^d$ is \emph{digital convex} if $\conv(S) \cap \mathbb{Z}^d = S$, where $...
International audienceA set S ⊂ Z^d is digital convex if conv(S) ∩ Z^d = S, where conv(S) denotes th...
International audienceA set S ⊂ Z 2 of integer points is digital convex if conv(S) ∩ Z 2 = S, where ...
International audienceDiscrete geometry redefines notions borrowed from Euclidean geometry creating ...
Discrete geometry redefines notions borrowed from Euclidean geometry creating a need for new algorit...
AbstractGiven a convex body C in the plane, its discrete hull is C0 = ConvexHull(C ∩ L), where L = Z...
International audienceThe notion of convexity translates non-trivially from Euclidean geometry to di...
Trying to develop a fast algorithm that finds all the edges of a convex hull produced three differen...
Le calcul de l'enveloppe convexe d'un objet est un problème déjà largement traité. Les différents al...
Dans cette thèse, nous donnons de nouveaux résultats sur la taille moyenne d’enveloppes convexes de ...
In computer science, pictures are digital and so, they are composed of pixels in 2D or of voxels in ...
All possible convex hull (i.e. the minimum area convex polygon containing the planar set) algorithms...
International audienceWe study the development of formally proved algorithms for computational geome...