Les documents cliniques hospitaliers constituent de riches sources d'information pour diverses applications telles que le recrutement de patients pour la recherche clinique, la surveillance épidémiologique, le codage médical et les outils d'aide à la décision. Cependant, étant essentiellement rédigés en langue naturelle, ces documents ne se prêtent pas aisément à des traitements informatiques à grande échelle et doivent d'abord être structurés. Nous visons à extraire les entités mentionnées dans ces documents, qu'elles soient simples ou structurées, c'est-à-dire contenant plusieurs étiquettes ou parties, et à les normaliser selon des bases de concepts. Nous contribuons à plusieurs tâches de traitement du langage naturel (TAL), à savoir la r...
Information Extraction (IE) is a natural language processing (NLP) task whose aim is to analyze text...
Background: Traditionally text mention normalization corpora have normalized concepts to single onto...
Background and objective: In order for computers to extract useful information from unstructured tex...
https://www.youtube.com/watch?v=UZlPuSmMCbAHospital clinical documents are rich sources of informati...
A vast amount of information in the biomedical domain is available as natural language free text. An...
In this paper we present two tools for facing task 2 in CLEF eHealth 2016. The first one is a semant...
Medical language processing has focused until recently on a few types of textual documents. However,...
Sachant qu'une grande partie des offres d'emplois et des profils candidats est en ligne, le e-recrut...
This paper presents a rule-based method for the detection and normalization of medical entities usin...
Recently, the healthcare industry has faced numerous challenges (epidemics management, demand volati...
AbstractBackgroundTo facilitate research applying Natural Language Processing to clinical documents,...
International audienceIn sensitive domains, the sharing of corpora is restricted due to confidential...
Information Extraction (IE) is a natural language processing (NLP) task whose aim is to analyze text...
This work focuses on the automatic de-identification of clinical records. The de-identification cons...
Electronic health records contain valuable information on patients’ clinical history in the form of ...
Information Extraction (IE) is a natural language processing (NLP) task whose aim is to analyze text...
Background: Traditionally text mention normalization corpora have normalized concepts to single onto...
Background and objective: In order for computers to extract useful information from unstructured tex...
https://www.youtube.com/watch?v=UZlPuSmMCbAHospital clinical documents are rich sources of informati...
A vast amount of information in the biomedical domain is available as natural language free text. An...
In this paper we present two tools for facing task 2 in CLEF eHealth 2016. The first one is a semant...
Medical language processing has focused until recently on a few types of textual documents. However,...
Sachant qu'une grande partie des offres d'emplois et des profils candidats est en ligne, le e-recrut...
This paper presents a rule-based method for the detection and normalization of medical entities usin...
Recently, the healthcare industry has faced numerous challenges (epidemics management, demand volati...
AbstractBackgroundTo facilitate research applying Natural Language Processing to clinical documents,...
International audienceIn sensitive domains, the sharing of corpora is restricted due to confidential...
Information Extraction (IE) is a natural language processing (NLP) task whose aim is to analyze text...
This work focuses on the automatic de-identification of clinical records. The de-identification cons...
Electronic health records contain valuable information on patients’ clinical history in the form of ...
Information Extraction (IE) is a natural language processing (NLP) task whose aim is to analyze text...
Background: Traditionally text mention normalization corpora have normalized concepts to single onto...
Background and objective: In order for computers to extract useful information from unstructured tex...