Abrupt happenings in financial markets have resulted to the need to adopt Lévy processes such as a variance gamma process in modelling financial derivatives since it has the ability to capture jumps that occur in such scenario. Sensitivity analysis in such market scenarios having characteristics of Lévy processes is made easier by adopting the integration by part techniques of Malliavin calculus. Thus, we apply the tools of the Malliavin calculus to obtain the special types of the greek vega required in sensitivity analysis in an interest rate market driven by the variance gamma process
The main purpose of this paper is to derive unbiased Monte Carlo estimators of various sensitivity i...
The submitted work deals with option pricing. Mathematical approach is immediately followed by an ec...
We discuss simulation of sensitivities or Greeks of multi-asset European style options under a speci...
We use the Malliavin calculus for Poisson processes in order to compute sensitivities for European o...
This study introduces computation of option sensitivities (Greeks) using the Malliavin calculus unde...
The Greeks of options are problematic to calculate both numerically and analytically when the struct...
AbstractIn recent years efficient methods have been developed for calculating derivative price sensi...
This thesis is divided into 4 chapters. Chapter 1 gives a brief explanation of what the Greeks are a...
This paper presents an original probabilistic method for the numerical computations of Greeks (i.e. ...
In this article, we give a brief informal introduction to Malliavin Calculus for newcomers. We apply...
Using the Malliavin calculus on Poisson space we compute Greeks in a market driven by a discontinuou...
We discuss the application of gradient methods to calibrate mean reverting stochastic volatility mod...
We discuss the application of gradient methods to calibrate mean reverting stochastic volatility mod...
This paper is the sequel of Part I [1], where we showed how to use the so-called Malliavin calculus ...
This paper considers an approach of Malliavin calculus to obtain the hedging ratio for mean-variance...
The main purpose of this paper is to derive unbiased Monte Carlo estimators of various sensitivity i...
The submitted work deals with option pricing. Mathematical approach is immediately followed by an ec...
We discuss simulation of sensitivities or Greeks of multi-asset European style options under a speci...
We use the Malliavin calculus for Poisson processes in order to compute sensitivities for European o...
This study introduces computation of option sensitivities (Greeks) using the Malliavin calculus unde...
The Greeks of options are problematic to calculate both numerically and analytically when the struct...
AbstractIn recent years efficient methods have been developed for calculating derivative price sensi...
This thesis is divided into 4 chapters. Chapter 1 gives a brief explanation of what the Greeks are a...
This paper presents an original probabilistic method for the numerical computations of Greeks (i.e. ...
In this article, we give a brief informal introduction to Malliavin Calculus for newcomers. We apply...
Using the Malliavin calculus on Poisson space we compute Greeks in a market driven by a discontinuou...
We discuss the application of gradient methods to calibrate mean reverting stochastic volatility mod...
We discuss the application of gradient methods to calibrate mean reverting stochastic volatility mod...
This paper is the sequel of Part I [1], where we showed how to use the so-called Malliavin calculus ...
This paper considers an approach of Malliavin calculus to obtain the hedging ratio for mean-variance...
The main purpose of this paper is to derive unbiased Monte Carlo estimators of various sensitivity i...
The submitted work deals with option pricing. Mathematical approach is immediately followed by an ec...
We discuss simulation of sensitivities or Greeks of multi-asset European style options under a speci...