When collections of functional data are too large to be exhaustively observed, survey sampling techniques provide an effective way to estimate global quantities such as the population mean function, without being obligated to store all the data. In this thesis, we propose a Horvitz–Thompson estimator of the mean trajectory, and with additional assumptions on the sampling design, we state a functional Central Limit Theorem and deduce asymptotic confidence bands. For a fixed sample size, we show that stratified sampling can greatly improve the estimation compared to simple random sampling. In addition, we extend Neyman’s rule of optimal allocation to the functional context. Taking into account auxiliary information has been developed with mod...
In this thesis, we address the problem of robust estimation of mean or total electricity consumption...
Precision performance of functional estimators : the case of food consumption This paper proposes ...
In the present paper we construct asymptotic confidence bands in nonparametric regression. Our assum...
When collections of functional data are too large to be exhaustively observed, survey sampling techn...
Lorsque des bases de données fonctionnelles sont trop grandes pour être observées de manière exhaust...
Lorsque des bases de données fonctionnelles sont trop grandes pour être observées de manière exhaust...
When dealing with very large datasets of functional data, survey sampling ap-proaches are useful in ...
Revised version for the Electronic Journal of StatisticsInternational audienceWhen the study variabl...
In this thesis, we are interested in estimating the mean electricity consumption curve. Since the st...
Cette thèse présente trois parties liées à la théorie des sondages. La première partie présente deux...
Consider informative selection of a sample from a finite population. Responses are realized as iid r...
We address the practical construction of asymptotic confidence intervals for smooth (i.e., pathwise ...
En révision pour Scandinavian J. of StatisticsFor fixed size sampling designs with high entropy it i...
We propose straightforward nonparametric estimators for the mean and the covariance functions of fun...
International audienceWe study the estimation of the mean function of a continuous-time stochastic p...
In this thesis, we address the problem of robust estimation of mean or total electricity consumption...
Precision performance of functional estimators : the case of food consumption This paper proposes ...
In the present paper we construct asymptotic confidence bands in nonparametric regression. Our assum...
When collections of functional data are too large to be exhaustively observed, survey sampling techn...
Lorsque des bases de données fonctionnelles sont trop grandes pour être observées de manière exhaust...
Lorsque des bases de données fonctionnelles sont trop grandes pour être observées de manière exhaust...
When dealing with very large datasets of functional data, survey sampling ap-proaches are useful in ...
Revised version for the Electronic Journal of StatisticsInternational audienceWhen the study variabl...
In this thesis, we are interested in estimating the mean electricity consumption curve. Since the st...
Cette thèse présente trois parties liées à la théorie des sondages. La première partie présente deux...
Consider informative selection of a sample from a finite population. Responses are realized as iid r...
We address the practical construction of asymptotic confidence intervals for smooth (i.e., pathwise ...
En révision pour Scandinavian J. of StatisticsFor fixed size sampling designs with high entropy it i...
We propose straightforward nonparametric estimators for the mean and the covariance functions of fun...
International audienceWe study the estimation of the mean function of a continuous-time stochastic p...
In this thesis, we address the problem of robust estimation of mean or total electricity consumption...
Precision performance of functional estimators : the case of food consumption This paper proposes ...
In the present paper we construct asymptotic confidence bands in nonparametric regression. Our assum...