高层临近空间以接近第一宇宙速度长时间巡航的新型飞行器对我国的战略安全及空间和平利用具有重要的意义。气动特性是进行相关飞行器构型设计以及控制设计的重要参数。高焓空气等离子体流动对地面研究相关新型巡航飞行器气动特性具有重要的意义。因此,开展高焓空气等离子体特性研究具有重要的意义和应用前景。本文以力学所长时间运行稀薄气体风洞建设为背景,对高焓空气等离子体的产生、表征及应用等关键问题进行研究,主要内容如下: 1. 采用二维平衡态流体模型,首先系统且全面地模拟了单高频感应耦合空气等离子体发生器内部流动与传热性能,揭示了放电功率、电源驱动频率、发生器结构参数(包括发生器出口半径、线圈的匝数与放电管间的距离、线圈螺距、工作压力等)对等离子体特性的影响规律:高功率有利于生成更高焓值且稳定均匀空气感应耦合等离子体;发生器半径尺寸过大或过小均不利于产生均匀稳定高温等离子体流动,需要选择最优点;更高的电源驱动频率有助于形成稳定且放电均匀等离子体;调节线圈匝数可以改变等离子体发生器放电线圈电流;线圈螺距增大,发生器内高温区域面积增大,但最高温度降低;工作压力为4 atm时发生器内最高温度相比于工作压力为1 atm时增大,但高温区域面积减小。由于感应耦合等离子体放电受到趋肤效应影响,以上所有计算得到的发生器内温度场分布中,高温区域主要集中在放电管内壁附近,发生器中心区域温度要相对较低。其次计算了直流-射频等离子体发生器的流动与传热特性,考虑了发生器进气口为高温气体(T=10 000 K)时感应耦合发生器内流场与温度场分布,发现此时整个发生器内温度分布均匀,中心区域同样可以获得较高的等离子体温度分布。基于数值模拟结果,提出了等离子体发生器的设计参数选择范围。 2. ...