Level algebras were first introduced and investigated by R.P. Stanley in the 1970s, and have since attracted the attention of more and more researchers in commutative algebra, because of both their intrinsic interest and the many applications they have to several other branches of mathematics. These include algebraic geometry, invariant theory, algebraic combinatorics and, surprisingly, even complexity theory. Thus---especially over the last few years---the theory of level algebras has been the object of a remarkable amount of research, and now can most definitely be considered a central topic within commutative algebra. A level algebra is defined as a Cohen-Macaulay (standard) graded algebra whose socle is concentrated in one degree, o...