International audienceA balanced transferable utility game (N, v) has a stable core if its core is externally stable, that is, if each imputation that is not in the core is dominated by some core element. Given two payoff allocations x and y, we say that x outvotes y via some coalition S of a feasible set if x dominates y via S and x allocates at least v(T) to any feasible T that is not contained in S. It turns out that outvoting is transitive and the set M of maximal elements with respect to outvoting coincides with the core if and only if the game has a stable core. By applying the duality theorem of linear programming twice, it is shown that M coincides with the core if and only if a certain nested balancedness condition holds. Thus, it ...