We study the motion of discrete interfaces driven by ferromagnetic interactions in a two-dimensional periodic environment by coupling the minimizing movements approach by Almgren, Taylor and Wang and a discrete-to-continuous analysis. The case of a homogeneous environment has been recently treated by Braides, Gelli and Novaga, showing that the effective continuous motion is a flat motion related to the crystalline perimeter obtained by Gamma-convergence from the ferromagnetic energies, with an additional discontinuous dependence on the curvature, giving in particular a pinning threshold. In this paper we give an example showing that in general the motion does not depend only on the Gamma-limit, but also on geometrical features that are not ...