During welding, gas bubbles can be trapped within the weld joint. These defects reduce the resistance to ductile fracture, but can be detected by non-destructive controls such as X-ray tomography. However, the direct use of defects in a simulation would lead to prohibitive computation times. The objective of the study is to analyze the influence of pores on the ductile fracture of welded parts, and to propose a method to take into account the tomography images in a simplified way so as to predict efficiently and precisely the resistance in ductile fracture.The influence on ductile fracture is studied by micromechanical simulations on elastoplastic cells containing a random distribution of pores, allowing to represent defect interaction. The...