Given any diagonal cyclic subgroup $\Lambda \subset G L(n+1, k)$ of order $d$, let $I_d \subset k\left[x_0, \ldots, x_n\right]$ be the ideal generated by all monomials $\left\{m_1, \ldots, m_r\right\}$ of degree $d$ which are invariants of $\Lambda . I_d$ is a monomial Togliatti system, provided $r \leq\left(\begin{array}{c}d+n-1 \\ n-1\end{array}\right)$, and in this case the projective toric variety $X_d$ parameterized by $\left(m_1, \ldots, m_r\right)$ is called a $G T$-variety with group $\Lambda$. We prove that all these $G T$-varieties are arithmetically Cohen-Macaulay and we give a combinatorial expression of their Hilbert functions. In the case $n=2$, we compute explicitly the Hilbert function, polynomial and series of $X_d$. We det...