Case-based reasoning (CBR) is a problem-solving methodology in artificial intelligence that attempts to solve new problems using past experiences known as cases. Experiences collected in a single case base from an institution or geographical region are seldom sufficient to solve diverse problems, especially in rare situations. Additionally, many institutions do not promote peer-to-peer (p2p) communication or encourage data sharing through such networks to retain autonomy. The paper proposes a federated CBR (F-CBR) architecture to address these challenges. F-CBR enables solving new problems based on similar cases from multiple autonomous CBR systems without p2p communication. We also designed an algorithm to minimize (irrelevant or unsolicit...