In this paper we study low-complexity colorings (or tilings) of the two-dimensional grid Z(2). A coloring is said to be of low complexity with respect to a rectangle if there exists m, n is an element of N such that there are no more than mn different rectangular m x n patterns in it. Open since it was stated in 1997, Nivat's conjecture states that such a coloring is necessarily periodic. Suppose we are given at most nm rectangular patterns of size n x m. If Nivat's conjecture is true, one can only build periodic colorings out of these patterns - meaning that if the m x n rectangular patterns of the coloring are among these mn patterns, it must be periodic. The main contribution of this paper proves that there exists at least one periodic c...