The subword complexity function \(p_{w}\) of a finite word \(w\) over a finite alphabet \(A\) with \(\operatorname*{card}A=q\geq1\) is defined by \(p_{w}(n)=\operatorname*{card}(F(w)\cap A^{n})\) for \(n\in\mathbb{N},\) where \(F(w)\) represents the set of all the subwords or factors of \(w\). The shape of the complexity function, especially its piecewise monotonicity, is studied in detail.The function \(h\) defined as \(h(n)=\min\left\{ q^{n},N-n+1\right\} \) for \(n\in\{0,1,\) \(...,N\}\) has values greater than or equal to those of the complexity function \(p_{w}\) for any \(w\in A^{N}\), i.e., \(p_{w}(n)\leq h(n)\) for all \(n\in\{0,1,...,N\}\). As a first result regarding \(h\), it is proved that for each \(N\in\mathbb{N}\) there exist...