The mangrove ecosystem is an important CO2 sink with an extraordinarily high primary productivity. However, it is vulnerable to the impact of climate warming and eutrophication. While there has been extensive research on plant growth and greenhouse gas emission in mangrove ecosystems, microbial communities, the primary biogeochemical cycling drivers, are much less understood. Here, we examined whether short-term experimental treatments: (1) eutro-phication with a supplement of 185 g N m-2middotyear-1 (N), (2) 3? warming (W), and (3) the dual treatment of N and W (NW) were sufficient to alter microbial communities in the sediment. After 4 months of experiments, most environ-mental factors remained unchanged. However, N had significant, stron...