Motivated by structural properties of the Web graph that support efficient data structures for in memory adjacency queries, we study the extent to which a large network can be compressed. Boldi and Vigna (WWW 2004), showed that Web graphs can be compressed down to three bits of storage per edge; we study the compressibility of social networks where again adjacency queries are a fundamental primitive. To this end, we propose simple combinatorial formulations that encapsulate efficient compressibility of graphs. We show that some of the problems are NP-hard yet admit effective heuristics, some of which can exploit properties of social networks such as link reciprocity. Our extensive experiments show that social networks and the Web graph exhi...