International audienceTitan's northern high latitudes host many large hydrocarbon lakes. Like water lakes on Earth, Titan's lakes are constantly subject to evaporation. This process strongly affects the atmospheric methane abundance, the atmospheric temperature, the lake mixed layer temperature, and the local wind circulation. In this work we use a 2D atmospheric mesoscale model coupled to a slab lake model to investigate the effect of solar and infrared radiation on the exchange of energy and methane between Titan's lakes and atmosphere. The magnitude of solar radiation reaching the surface of Titan through its thick atmosphere is only a few watts per square meter. However, we find that this small energy input is important and is comparabl...