Motivated by online labor markets, we consider the online assortment optimization problem faced by a two-sided matching platform that hosts a set of suppliers waiting to match with a customer. Arriving customers are shown an assortment of suppliers, and may choose to issue a match request to one of them. After spending some time on the platform, each supplier reviews all the match requests she has received and, based on her preferences, she chooses whether to match with a customer or to leave unmatched. We study how platforms should design online assortment algorithms to maximize the expected number of matches in such two-sided settings. We establish that a simple greedy algorithm is 1/2-competitive against an optimal clairvoyant algorithm ...