The Cauchy slicings for globally hyperbolic spacetimes and their relation with the causal boundary are surveyed and revisited, starting at the seminal conformal boundary constructions by R. Penrose. Our study covers: (1) adaptive possibilities and techniques for their Cauchy slicings, (2) global hyperbolicity of sliced spacetimes, (3) critical review on the conformal and causal boundaries for a globally hyperbolic spacetime, and (4) procedures to compute the causal boundary of a Cauchy temporal splitting by using isocausal comparison with a static product. New simple counterexamples on R-2 illustrate a variety of possibilities related to these splittings, such as the logical independence (for normalized sliced spacetimes) between the comple...
We consider (flat) Cauchy-complete GH spacetimes, i.e., globally hyperbolic flat lorentzian manifold...
We take a new approach to Lorentzian splitting geometry, revamping and generalizing the classical no...
There is constructed, for each member of a one-parameter family of cosmological models, which is obt...
Fecha de lectura de Tesis: 13 de junio 2018.Causality is a specific tool of Lorentzian Geometry, wit...
Global hyperbolicity is the most important condition on causal structure space-time, which is involv...
Two separate groups of results are considered. First, the concept of causal completeness first defin...
This chapter is an up-to-date account of results on globally hyperbolic spacetimes, and serves sever...
The folk questions in Lorentzian Geometry, which concerns the smoothness of time functions and slici...
In this work, we prove a synthetic splitting theorem for globally hyperbolic Lorentzian length space...
As a consequence of the Lorentzian version of Liouville’s Theorem, everyconformally flat space-time ...
We present a new development of the causal boundary of spacetimes, originally introduced by Geroch, ...
We argue that in the context of string theory, the usual restriction to globally hyperbolic space–ti...
A new causal boundary, which we will term the l-boundary, inspired by the geometry of the space of l...
We prove that a globally hyperbolic spacetime with its causality relation is a bicontinuous poset wh...
The classical definition of {\em global hyperbolicity} for a spacetime $(M,g)$ comprises two conditi...
We consider (flat) Cauchy-complete GH spacetimes, i.e., globally hyperbolic flat lorentzian manifold...
We take a new approach to Lorentzian splitting geometry, revamping and generalizing the classical no...
There is constructed, for each member of a one-parameter family of cosmological models, which is obt...
Fecha de lectura de Tesis: 13 de junio 2018.Causality is a specific tool of Lorentzian Geometry, wit...
Global hyperbolicity is the most important condition on causal structure space-time, which is involv...
Two separate groups of results are considered. First, the concept of causal completeness first defin...
This chapter is an up-to-date account of results on globally hyperbolic spacetimes, and serves sever...
The folk questions in Lorentzian Geometry, which concerns the smoothness of time functions and slici...
In this work, we prove a synthetic splitting theorem for globally hyperbolic Lorentzian length space...
As a consequence of the Lorentzian version of Liouville’s Theorem, everyconformally flat space-time ...
We present a new development of the causal boundary of spacetimes, originally introduced by Geroch, ...
We argue that in the context of string theory, the usual restriction to globally hyperbolic space–ti...
A new causal boundary, which we will term the l-boundary, inspired by the geometry of the space of l...
We prove that a globally hyperbolic spacetime with its causality relation is a bicontinuous poset wh...
The classical definition of {\em global hyperbolicity} for a spacetime $(M,g)$ comprises two conditi...
We consider (flat) Cauchy-complete GH spacetimes, i.e., globally hyperbolic flat lorentzian manifold...
We take a new approach to Lorentzian splitting geometry, revamping and generalizing the classical no...
There is constructed, for each member of a one-parameter family of cosmological models, which is obt...