Introduction: A neural network is a programmed algorithm based on an inference model. For the execution of a vision process, advanced inference is necessary. Low energy consumption is also desirable. Objectives: to analyze the comparative efficiency in the execution of artificial vision through embedded systems. Methodology: To compare the inference times involved in executing a deep neural network in an embedded system such as Raspberry Pi 4 and an inference accelerator designed by Intel. Results: The installation and configuration process necessary for compatibility between the two devices is detailed already trained neural network models focused on image processing are used and the inference time involved in executing them is compared. C...
Durante los últimos años los algoritmos de deep learning han experimentado una evolución sin precede...
[EN] In the last decade, deep learning has achieved spectacular results in numerous applications. Th...
Este trabajo profundiza en el ámbito del Deep Learning o aprendizaje profundo. Analizaremos el estad...
Introduction: A neural network is a programmed algorithm based on an inference model. For the execut...
In the last decade, artificial intelligence has transformed the world. Big Data and large software c...
In recent years the artificial intelligence has been providing solutions in many areas of human ende...
Deep Neural Networks (DNNs) have emerged as the reference processing architecture for the implementa...
La capacidad de permitir que una computadora reconozca en una imagen los objetos, ambiente y posició...
Resumen Las redes artificiales de neuronas son sistemas con grandes capacidades de procesamiento en ...
Las redes neuronales convolucionales cada vez son más populares en aplicaciones de aprendizaje profu...
Finally, the fourth work was published in the “WCCI” conference in 2020 and consisted of an individu...
Tesis de MaestríaLas redes neuronales artificiales tienen diversas aplicaciones tales como predicció...
Deep learning techniques have emerged as an effective solution to the problems of current pattern re...
[ES] En los últimos tiempos, hemos asistido a un resurgimiento de las redes neuronales para la resol...
Debido a la habilidad para modelar problemas complejos, actualmente las Redes Neuronales Artificiale...
Durante los últimos años los algoritmos de deep learning han experimentado una evolución sin precede...
[EN] In the last decade, deep learning has achieved spectacular results in numerous applications. Th...
Este trabajo profundiza en el ámbito del Deep Learning o aprendizaje profundo. Analizaremos el estad...
Introduction: A neural network is a programmed algorithm based on an inference model. For the execut...
In the last decade, artificial intelligence has transformed the world. Big Data and large software c...
In recent years the artificial intelligence has been providing solutions in many areas of human ende...
Deep Neural Networks (DNNs) have emerged as the reference processing architecture for the implementa...
La capacidad de permitir que una computadora reconozca en una imagen los objetos, ambiente y posició...
Resumen Las redes artificiales de neuronas son sistemas con grandes capacidades de procesamiento en ...
Las redes neuronales convolucionales cada vez son más populares en aplicaciones de aprendizaje profu...
Finally, the fourth work was published in the “WCCI” conference in 2020 and consisted of an individu...
Tesis de MaestríaLas redes neuronales artificiales tienen diversas aplicaciones tales como predicció...
Deep learning techniques have emerged as an effective solution to the problems of current pattern re...
[ES] En los últimos tiempos, hemos asistido a un resurgimiento de las redes neuronales para la resol...
Debido a la habilidad para modelar problemas complejos, actualmente las Redes Neuronales Artificiale...
Durante los últimos años los algoritmos de deep learning han experimentado una evolución sin precede...
[EN] In the last decade, deep learning has achieved spectacular results in numerous applications. Th...
Este trabajo profundiza en el ámbito del Deep Learning o aprendizaje profundo. Analizaremos el estad...