System identification methods have extensive application in the aerospace industry’s experimental stability and control studies. Accurate aerodynamic modeling and system identification are necessary because they enable performance evaluation, flight simulation, control system design, fault detection, and model aircraft’s complex non-linear behavior. Various estimation methods yield different levels of accuracies with varying complexity and computational time requirements. The primary motivation of such studies is the accurate quantification of process noise. This research evaluates the performance of two recursive parameter estimation methods, viz.; First is the Fourier Transform Regression (FTR). The second approach describes the Extended ...