Not AvailableForecasting fish landings is a critical element tool for fisheries managers and policymakers to short-term quantitative recommendations for fisheries management. In this study, the forecasting of a quarterly landing of total fish catch and the catch of major pelagic fish species (Indian Mackerel and Bombay duck) was done by nonlinear autoregressive with exogenous inputs (NARX), an artificial neural network model. The quarterly landings data of total fish catch and the catch of major pelagic fish along with quarterly average data on the mean value of environmental variables were used for building the model and forecasting. The developed NARX model was validated with the actual fish catch on holdout data with prediction error 2.4...