The translocation process of a globular protein (ubiquitin) across a cylindrical nanopore is studied via molecular dynamics simulations. The ubiquitin is described by a native-centric model on a C R carbon backbone to investigate the influence of protein-like structural properties on the translocation mechanism. A thermodynamical and kinetic characterization of the process is obtained by studying the statistics of blockage times, the mobility, and the translocation probability as a function of the pulling force F acting in the pore. The transport dynamics occurs when the force exceeds a threshold F c depending on a free-energy barrier that ubiquitin has to overcome in order to slide along the channel. Such a barrier results from competition...