G. Genzten’s 1938 proof of the consistency of pure arithmetic was hailed as a success for finitism and constructivism, but his proof requires induction along ordinal notations in Cantor normal form up to the first epsilon number, ε0. This left the task of giving a finitisically acceptable proof of the well-ordering of those ordinal notations, without which Gentzen’s proof could hardly be seen as a success for finitism. In his seminal book Proof Theory G. Takeuti provides such a proof. After a brief philosophical introduction, we provide a reconstruction of Takeuti’s proof including corrections, comments, re-organization and notational adjustments for the sake of clarity. The result is a much longer, but much more tractable p...