In the area of steering behaviours of autonomous agents and crowd simulations, there is a plethora of methods for executing the simulations. A very hard-to-achieve goal of crowd simulations is to make them seem natural and accurately reflect real-life crowds. A very important criterion for this goal is to have the agents avoid collisions, both with each other and with the environment. A less important, but important nonetheless, criterion is to not let the time taken or distance covered to reach the goal in the simulation be too high, compared with when not implementing collision avoidance. This paper proposes and explores a novel method of enhancing vector field-based steering with rule-based deviations to implement collision avoidance. Th...