Local search algorithms are frequently used to handle complex optimization problems involving binary decision variables. One way of implementing a local search procedure is by using a mixed-integer programming solver to explore a neighborhood defined through a constraint that limits the number of binary variables whose values are allowed to change in a given iteration. Recognizing that not all variables are equally promising to change when searching for better neighboring solutions, we propose a weighted iterated local branching heuristic. This new procedure differs from similar existing methods since it considers groups of binary variables and associates with each group a limit on the number of variables that can change. The groups of vari...