El operador Laplaciano que conocemos en calculo, tiene grandes aplicaciones en el análisis complejo y la geometria diferencial, y de aquí, nace la curiosidad de ver como este actúa sobre variedades Riemannianas, y mas concretamente en la esfera. Para lo cual se hace uso el operador * de Hodge para dar paso a la definición del Operador Laplaciano sobre variedades Riemannianas, o el operador de Laplace-Beltrami, ya con esta definicion, se procede a trabajarlo bajo coordenadas locales, para así aplicarlo sobre la esfera y ver el comportamiento de las funciones y sus autovalores sobre la esfera.The Laplaciano operator that we know in calculus, has great applications in complex analysis and differential geometry, and from here, the curiosity i...
In contrst to ordinary differential equations, there is no unified theory of partial differential eq...
Em computação gráfica, diversos problemas consistem na análise e manipulação da geometria de superfí...
In this work we study the Laplace-Beltrami operator defined on Riemannian manifolds. In addition to ...
AbstractA continuous expansion ƒ(x) = ∝∞∞ ƒλ(x)h(λ)dλ is established for functions or distributions ...
Em uma variedade riemanniana conexa e compacta introduziremos o conceito de espectro do operador lap...
In this work, we will prove some results for the first eigenvalue of a linear differential Schrödinger...
Motivated by problems of mathematical physics (quantum chaos) questions of equidistribution of eigen...
Um problema com muitas aplicações físicas é estimar os autovalores do operador de Laplace e suas gen...
We give a survey of recent works concerning the mapping properties of joint harmonic projection oper...
http://ieeexplore.ieee.org/One of the challenges in geometry processing is to automatically reconstr...
A great deal of classical harmonic analysis is concerned with the properties of the Laplacian L on E...
This book treats spherical harmonic expansion of real analytic functions and hyperfunctions on the s...
In the paper we characterize the reproducing kernel $\mathcal {K}_{n,h}$ for the Hardy space $\mathc...
Perturbations of the Laplacian are known as Schrodinger operators. We pose a question about perturba...
In a connected and compact Riemannian Manifold we will introduce the concept of spectre of Laplace o...
In contrst to ordinary differential equations, there is no unified theory of partial differential eq...
Em computação gráfica, diversos problemas consistem na análise e manipulação da geometria de superfí...
In this work we study the Laplace-Beltrami operator defined on Riemannian manifolds. In addition to ...
AbstractA continuous expansion ƒ(x) = ∝∞∞ ƒλ(x)h(λ)dλ is established for functions or distributions ...
Em uma variedade riemanniana conexa e compacta introduziremos o conceito de espectro do operador lap...
In this work, we will prove some results for the first eigenvalue of a linear differential Schrödinger...
Motivated by problems of mathematical physics (quantum chaos) questions of equidistribution of eigen...
Um problema com muitas aplicações físicas é estimar os autovalores do operador de Laplace e suas gen...
We give a survey of recent works concerning the mapping properties of joint harmonic projection oper...
http://ieeexplore.ieee.org/One of the challenges in geometry processing is to automatically reconstr...
A great deal of classical harmonic analysis is concerned with the properties of the Laplacian L on E...
This book treats spherical harmonic expansion of real analytic functions and hyperfunctions on the s...
In the paper we characterize the reproducing kernel $\mathcal {K}_{n,h}$ for the Hardy space $\mathc...
Perturbations of the Laplacian are known as Schrodinger operators. We pose a question about perturba...
In a connected and compact Riemannian Manifold we will introduce the concept of spectre of Laplace o...
In contrst to ordinary differential equations, there is no unified theory of partial differential eq...
Em computação gráfica, diversos problemas consistem na análise e manipulação da geometria de superfí...
In this work we study the Laplace-Beltrami operator defined on Riemannian manifolds. In addition to ...