This review provides a comprehensive study of the nonlinear transport properties of magnons, which are electrically emitted or absorbed inside extended YIG films by spin transfer effects via a YIG$\vert$Pt interface. Our purpose is to experimentally elucidate the pertinent picture behind the asymmetric electrical variation of the magnon transconductance analogous to an electric diode. The feature is rooted in the variation of the density of low-lying spin excitations via an electrical shift of the magnon chemical potential. As the intensity of the spin transfer increases in the forward direction (regime of magnon emission), the transport properties of low-energy magnon go through 3 distinct regimes: \textit{i)} at low currents, where the sp...