Vizing je leta 1968 postavil domnevo, da je dominantno število kartezičnega produkta dveh grafov večje ali enako produktu njunih dominantnih števil. V magistrskem delu obravnavamo družine grafov, ki v tej domnevi dosežejo enakost. V prvem delu magistrske naloge smo navedli pojme in trditve, ki jih potrebujemo za razumevanje glavnega problema naloge. Drugo poglavje se nanaša na različne meje dominantnega števila kartezičnega produkta dveh grafov in družine grafov, ki zadoščajo Vizingovi domnevi. V tretjem poglavju obravnavamo družine grafov, ki pod določenimi pogoji dosežejo enakost v Vizingovi domnevi, ter znane rezultate podamo v tabeli.In 1963, Vizing conjectured that the domination number of the Cartesian product of two graphs is greater...
A dominating set ▫$D$▫ gor a graph ▫$G$▫ is a subset ▫$V(G)$▫ such that any vertex in ▫$V(G)-D$▫ has...
The study of domination in Cartesian products has received its main motivation from attempts to sett...
For any graph G=(V,E), a subset S ⊆ V dominates G if all vertices are contained in the closed neighb...
Vizingova domneva iz leta 1968 trdi, da je dominacijsko število kartezičnega produkta dveh grafov vs...
Vpeljemo koncept poštenega sprejema grafa, ki je povezan z njegovim dominantnim številom. Dokažemo, ...
Dominacija na grafih je intenzivno raziskovana veja v teoriji grafov. Leta 1963 je Vizing postavil d...
Vizing conjectured in 1963 that the domination number of the Cartesian product of two graphs is at l...
Vizing conjectured in 1963 that the domination number of the Cartesian product of two graphs is at l...
Vizing conjectured in 1963 that the domination number of the Cartesian product of two graphs is at l...
Vizing\u27s conjecture from 1968 asserts that the domination number of the Cartesian product of two ...
We introduce a new setting for dealing with the problem of the domination number of the Cartesian pr...
conjecture from 1968 asserts that the domination number of the Cartesian product of two graphs is at...
For any graph G=(V,E), a subset S of V dominates G if all vertices are contained in the closed neigh...
AbstractThe well-known conjecture of Vizing on the domination number of Cartesian product graphs cla...
V magistrskem delu obravnavamo različne tipe dominacij in sicer dominantno število, neodvisnostno št...
A dominating set ▫$D$▫ gor a graph ▫$G$▫ is a subset ▫$V(G)$▫ such that any vertex in ▫$V(G)-D$▫ has...
The study of domination in Cartesian products has received its main motivation from attempts to sett...
For any graph G=(V,E), a subset S ⊆ V dominates G if all vertices are contained in the closed neighb...
Vizingova domneva iz leta 1968 trdi, da je dominacijsko število kartezičnega produkta dveh grafov vs...
Vpeljemo koncept poštenega sprejema grafa, ki je povezan z njegovim dominantnim številom. Dokažemo, ...
Dominacija na grafih je intenzivno raziskovana veja v teoriji grafov. Leta 1963 je Vizing postavil d...
Vizing conjectured in 1963 that the domination number of the Cartesian product of two graphs is at l...
Vizing conjectured in 1963 that the domination number of the Cartesian product of two graphs is at l...
Vizing conjectured in 1963 that the domination number of the Cartesian product of two graphs is at l...
Vizing\u27s conjecture from 1968 asserts that the domination number of the Cartesian product of two ...
We introduce a new setting for dealing with the problem of the domination number of the Cartesian pr...
conjecture from 1968 asserts that the domination number of the Cartesian product of two graphs is at...
For any graph G=(V,E), a subset S of V dominates G if all vertices are contained in the closed neigh...
AbstractThe well-known conjecture of Vizing on the domination number of Cartesian product graphs cla...
V magistrskem delu obravnavamo različne tipe dominacij in sicer dominantno število, neodvisnostno št...
A dominating set ▫$D$▫ gor a graph ▫$G$▫ is a subset ▫$V(G)$▫ such that any vertex in ▫$V(G)-D$▫ has...
The study of domination in Cartesian products has received its main motivation from attempts to sett...
For any graph G=(V,E), a subset S ⊆ V dominates G if all vertices are contained in the closed neighb...