Cryptographic key exchange protocols traditionally rely on computational conjectures such as the hardness of prime factorization<sup>1</sup> to provide security against eavesdropping attacks. Remarkably, quantum key distribution protocols such as the Bennett-Brassard scheme<sup>2</sup> provide information-theoretic security against such attacks, a much stronger form of security unreachable by classical means. However, quantum protocols realized so far are subject to a new class of attacks exploiting a mismatch between the quantum states or measurements implemented and their theoretical modelling, as demonstrated in numerous experiments<sup>3-6</sup>. Here we present the experimental realization of a compl...