According to the objective Bayesian approach to inductive logic, premisses inductively entail a conclusion just when every probability function with maximal entropy, from all those that satisfy the premisses, satisfies the conclusion. When premisses and conclusion are constraints on probabilities of sentences of a first-order predicate language, however, it is by no means obvious how to determine these maximal entropy functions. This paper makes progress on the problem in the following ways. Firstly, we introduce the concept of a limit in entropy and show that, if the set of probability functions satisfying the premisses contains a limit in entropy, then this limit point is unique and is the maximal entropy probability function. Next, we tu...