In this paper we show as the neural network methodology, coupled with the Least Squares Monte Carlo approach, can be very helpful in valuing R&D investment opportunities. As it is well known, R&D projects are made in a phased manner, with the commencement of subsequent phase being dependent on the successful completion of the preceding phase. This is known as a sequential investment and therefore R&D projects can be considered as compound options. In addition, R&D investments often involve considerable cost uncertainty so that they can be viewed as an exchange option, i.e. a swap of an uncertain investment cost for an uncertain gross project value. Finally, the production investment can be realized at any time before the mat...