Microelectromechanical systems (MEMS) are often affected in their operational environment by different physical phenomena, each one possibly occurring at different length and time scales. Data-driven formulations can then be helpful to deal with such complexity in their modeling. By referring to a single-axis Lorentz force micro-magnetometer, characterized by a current flowing inside slender mechanical parts so that the system can be driven into resonance, it has been shown that the sensitivity to the magnetic field may become largely enhanced through proper (topology) optimization strategies. In our previous work, a reduced-order physical model for the movable structure was developed; such a model-based approach did not account for ...