Laser powder bed fusion (LPBF) facilitates near-net-shape fabrication of geometrically complex tools. This leads to significantly reduced post-processing effort compared to conventional manufacturing, for example in the case of hobbing cutters. However, due to the high carbon equivalent of high-speed steels, cracking of the brittle carbon martensite is very likely during LPBF. In contrast, carbon-free maraging steels promise enhanced processability due to the formation of a soft martensite. Hardening of the latter is guaranteed by the precipitation of intermetallic phases. A novel maraging steel for cutting applications (Fe25Co15Mo (weight%)) has been developed in recent years. This alloy might therefore be a candidate for LPBF. In the p...