Bisher wurden tiefe neuronale Netzwerkmodelle (DNN) in der Objekterkennung eingesetzt, jedoch könnten DNNs ein nützliches Instrument für neuronale Gedächtnisrepräsentationen sein. Mithilfe multivariater Methoden kombinierten wir Modellmerkmale und Gehirnaktivitätsmuster. Encoding Modelle auf ultra-hochauflösendem-fMRT zeigten einen analogen Komplexitätsgradienten in DNN und Gehirn. DNNs zeigten eine Transformation von perzeptuellen zu konzeptuellen Formaten während des visuellen Kurzzeitgedächtnisses, der Konsolidierung und des Abrufs im intrakraniellen EEG und Verhalten. Die Untersuchung komplexer visueller Inputs in Form von Emotionen mittels trauma-analogen Videos zeigte eine höhere Generalisierung von perzeptuellen und konzeptuellen For...
Deep neural networks (DNNs) have revolutionized computer science and are now widely used for neurosc...
Inherent correlations between visual and semantic features in real-world scenes make it difficult to...
We present a dataset derived through the DNN feature decoding analyses (Horikawa and Kamitani, 2017...
Bisher wurden tiefe neuronale Netzwerkmodelle (DNN) in der Objekterkennung eingesetzt, jedoch könnte...
The overarching objective of this work is to bridge neuroscience and artificial intelligence to ulti...
The complex multi-stage architecture of cortical visual pathways provides the neural basis for effic...
Over the last decade, deep neural networks (DNNs) have become a standard tool in computer vision, al...
Dysfunction of the visual object recognition system in humans is briefly discussed and a basic conne...
How does the brain represent different modes of information? Can we design a system that can automat...
The mental contents of perception and imagery are thought to be encoded in hierarchical representati...
How the brain representation of conceptual knowledge vary as a function of processing goals, strateg...
The primate visual system achieves remarkable visual object recognition performance even in brief pr...
Published:20 May 2020How the brain representation of conceptual knowledge varies as a function of p...
The recent breakthrough in deep learning has led to a rapid explosion in the evolution of artificial...
Bevor wir in der Lage sind Sehobjekte zu erkennen, müssen wir diese von ihrem Hintergrund trennen. D...
Deep neural networks (DNNs) have revolutionized computer science and are now widely used for neurosc...
Inherent correlations between visual and semantic features in real-world scenes make it difficult to...
We present a dataset derived through the DNN feature decoding analyses (Horikawa and Kamitani, 2017...
Bisher wurden tiefe neuronale Netzwerkmodelle (DNN) in der Objekterkennung eingesetzt, jedoch könnte...
The overarching objective of this work is to bridge neuroscience and artificial intelligence to ulti...
The complex multi-stage architecture of cortical visual pathways provides the neural basis for effic...
Over the last decade, deep neural networks (DNNs) have become a standard tool in computer vision, al...
Dysfunction of the visual object recognition system in humans is briefly discussed and a basic conne...
How does the brain represent different modes of information? Can we design a system that can automat...
The mental contents of perception and imagery are thought to be encoded in hierarchical representati...
How the brain representation of conceptual knowledge vary as a function of processing goals, strateg...
The primate visual system achieves remarkable visual object recognition performance even in brief pr...
Published:20 May 2020How the brain representation of conceptual knowledge varies as a function of p...
The recent breakthrough in deep learning has led to a rapid explosion in the evolution of artificial...
Bevor wir in der Lage sind Sehobjekte zu erkennen, müssen wir diese von ihrem Hintergrund trennen. D...
Deep neural networks (DNNs) have revolutionized computer science and are now widely used for neurosc...
Inherent correlations between visual and semantic features in real-world scenes make it difficult to...
We present a dataset derived through the DNN feature decoding analyses (Horikawa and Kamitani, 2017...