ilustraciones, diagramas, tablasIn recent years, the use of deep learning-based models for developing advanced healthcare systems has been growing due to the results they can achieve. However, the majority of the proposed deep learning-models largely use convolutional and pooling operations, causing a loss in valuable data and focusing on local information. In this thesis, we propose a deep learning-based approach that uses global and local features which are of importance in the medical image segmentation process. In order to train the architecture, we used extracted three-dimensional (3D) blocks from the full magnetic resonance image resolution, which were sent through a set of successive convolutional neural network (CNN) layers free of ...
El trabajo se engloba dentro de un proyecto en colaboración con los hospitales públicos de la Comuni...
Accurate segmentation of anatomical structures is crucial for radiation therapy in cancer treatment....
Este trabajo fin de grado plantea diferentes arquitecturas de redes neuronales para realizar la segm...
In recent years, the use of deep learning-based models for developing advanced healthcare systems ha...
Deep learning models are driving major advances in many computer vision tasks (image classification,...
L'imagerie médicale est un domaine vaste guidé par les avancées en instrumentation, en techniques d'...
Les réseaux neuronaux profonds (DNNs), et plus particulièrement les réseaux neuronaux convolutifs (C...
Deep convolutional neural networks (DCNNs) are a popular deep learning technique that has been widel...
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médi...
International audienceIn this paper we propose a deep learning approach for segmenting sub-cortical ...
We present a novel approach to automatically segment magnetic resonance (MR) images of the human bra...
This thesis presents a convolutional neural network (CNN) based approach for detection and segmentat...
[ES] En la actualidad, la detección precoz de anomalías en estructuras cerebrales de pacientes se ha...
This thesis proposes different models for a variety of applications, such as semantic segmentation, ...
Deep neural networks (DNNs) and particularly convolutional neural networks (CNNs) trained on large d...
El trabajo se engloba dentro de un proyecto en colaboración con los hospitales públicos de la Comuni...
Accurate segmentation of anatomical structures is crucial for radiation therapy in cancer treatment....
Este trabajo fin de grado plantea diferentes arquitecturas de redes neuronales para realizar la segm...
In recent years, the use of deep learning-based models for developing advanced healthcare systems ha...
Deep learning models are driving major advances in many computer vision tasks (image classification,...
L'imagerie médicale est un domaine vaste guidé par les avancées en instrumentation, en techniques d'...
Les réseaux neuronaux profonds (DNNs), et plus particulièrement les réseaux neuronaux convolutifs (C...
Deep convolutional neural networks (DCNNs) are a popular deep learning technique that has been widel...
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médi...
International audienceIn this paper we propose a deep learning approach for segmenting sub-cortical ...
We present a novel approach to automatically segment magnetic resonance (MR) images of the human bra...
This thesis presents a convolutional neural network (CNN) based approach for detection and segmentat...
[ES] En la actualidad, la detección precoz de anomalías en estructuras cerebrales de pacientes se ha...
This thesis proposes different models for a variety of applications, such as semantic segmentation, ...
Deep neural networks (DNNs) and particularly convolutional neural networks (CNNs) trained on large d...
El trabajo se engloba dentro de un proyecto en colaboración con los hospitales públicos de la Comuni...
Accurate segmentation of anatomical structures is crucial for radiation therapy in cancer treatment....
Este trabajo fin de grado plantea diferentes arquitecturas de redes neuronales para realizar la segm...