International audienceData-stream clustering is an ever-expanding subdomain of knowledge extraction. Most of the past and present research effort aims at efficient scaling up for the huge data repositories. Our approach focuses on qualitative improvement, mainly for "weak signals" detection and precise tracking of topical evolutions in the framework of information watch - though scalability is intrinsically guaranteed in a possibly distributed implementation. Our GERMEN algorithm exhaustively picks up the whole set of density peaks of the data at time t, by identifying the local perturbations induced by the current document vector, such as changing cluster borders, or new/vanishing clusters. Optimality yields from the uniqueness 1) of the d...
International audienceNous avons conçu et implanté l'environnement Germen de clustering incrémental ...
National audienceCo-clustering aims to identify block patterns in a data table, from a joint cluster...
The main objective of this thesis is to propose a dynamic clustering algorithm that can handle not o...
International audienceIn the domain of data-stream clustering, e.g., dynamic text mining as our appl...
International audienceL'analyse à la volée de flux massifs potentiellement infinis est fondamental d...
The research outlined in this thesis concerns the development of approaches based on growing neural ...
International audienceWe address here two major challenges presented by dynamic data mining: 1) the ...
Le travail de recherche exposé dans cette thèse concerne le développement d'approches à base de grow...
International audienceAutomatic processing of textual data enables users to analyze semi-automatical...
International audienceEstimating the frequency of any piece of informa- tion in large-scale distribu...
We address here two major challenges presented by dynamic data mining: 1) the stability challenge: w...
National audienceThis work is related to the unsupervised machine learning problem. Some clustering ...
Ces dernières années, les réseaux sont devenus une source importante d’informations dans différents ...
Au cours des dernières années, nous avons constaté une augmentation du volume d’information sous la ...
International audienceCet article s'intéresse au traitement et de la visualisation des flux de donné...
International audienceNous avons conçu et implanté l'environnement Germen de clustering incrémental ...
National audienceCo-clustering aims to identify block patterns in a data table, from a joint cluster...
The main objective of this thesis is to propose a dynamic clustering algorithm that can handle not o...
International audienceIn the domain of data-stream clustering, e.g., dynamic text mining as our appl...
International audienceL'analyse à la volée de flux massifs potentiellement infinis est fondamental d...
The research outlined in this thesis concerns the development of approaches based on growing neural ...
International audienceWe address here two major challenges presented by dynamic data mining: 1) the ...
Le travail de recherche exposé dans cette thèse concerne le développement d'approches à base de grow...
International audienceAutomatic processing of textual data enables users to analyze semi-automatical...
International audienceEstimating the frequency of any piece of informa- tion in large-scale distribu...
We address here two major challenges presented by dynamic data mining: 1) the stability challenge: w...
National audienceThis work is related to the unsupervised machine learning problem. Some clustering ...
Ces dernières années, les réseaux sont devenus une source importante d’informations dans différents ...
Au cours des dernières années, nous avons constaté une augmentation du volume d’information sous la ...
International audienceCet article s'intéresse au traitement et de la visualisation des flux de donné...
International audienceNous avons conçu et implanté l'environnement Germen de clustering incrémental ...
National audienceCo-clustering aims to identify block patterns in a data table, from a joint cluster...
The main objective of this thesis is to propose a dynamic clustering algorithm that can handle not o...